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The heat content asymptotics for variable geometries
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Mathematics Department, University of Oregon, Eugene, Or 97403, USA
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Abstract. Let gt be a time-dependent family of Riemannian metrics on a manifoldM with a
smooth boundary. Letφ be the initial temperature ofM and letρ be the specific heat ofM. Impose
Dirichlet or Neumann boundary conditions and letβ(t) be the resulting total heat energy content
of M. As t ↓ 0, one can expandβ ∼ ∑

n βnt
n/2 in an asymptotic series in half integer powers

of the parametert . We determineβn for n 6 4 in terms of geometric quantities; this extends
previous results from the autonomous setting where the metric was independent of the parameter
t to a dynamic setting where the metric is permitted to be time dependent.

LetM be a compact manifold with smooth boundary∂M. Let gt be a smooth one-parameter
family of metrics onM and let1t be the associated Laplace operators defined by these metrics.
If φ is the initial temperature ofM, the temperature distributionu(x; t) for t > 0 is determined
by the equations:

(∂t +1t)u = 0 Bu = 0 and u(x; 0) = φ.
HereB denotes either Dirichlet or Neumann boundary conditions; we can impose different
boundary conditions on different components of the boundary if we wish. Letρ(x; t) be the
specific heat of the manifold. The total heat energy content of the manifold is given by

β(φ, ρ)(t) :=
∫
M

u(x; t)ρ(x; t) dx

where dx is the Riemannian measure determined by the metric at timet = 0; this does not
involve any loss of generality since we permitρ to vary with time. Ast ↓ 0, there is an
asymptotic series of the form

β(φ, ρ)(t) ∼
∑
n>0

βn(φ, ρ)t
n/2.

The focus of this paper will be the calculation of the invariantsβn in this setting for
n = 0, 1, 2, 3, 4; we must extend previous results from the autonomous setting to the time-
dependent setting. We will use methods of invariance theory to do this. Consequently, although
we are primarily interested in the scalar Laplacian, it is convenient to enlarge the class of
operators with which we work; this enlarges the number of functorial properties at our disposal.
It is somewhat paradoxical in this subject that applying the functorial method requires one to
determine formulae in great generality even if one is just, interested in the scalar Laplacian.
We refer, for example to step 3 in the proof of lemma 9 where we use a non-trivial connection.

† E-mail address:gilkeymath.uoregon.edu
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Any operator of Laplace type on a vector bundleV can be put in the formD0 =
−(Trace(∇2) + E) where∇ is a connection onV andE is an endomorphism ofV ; we
refer to [2] for details. (Since we must deal with non-trivial connections and endomorphisms,
we are naturally led to the bundle case.) We consider time-dependent families of operators of
Laplace type which have the form

Dt := D0 +
∑
r>0

t r{Gr,ij (x)∇i∇j +Fr,i (x)∇i + Er (x)}. (1)

(We expand relative to a frame for the tangent bundle which is orthogonal with respect to the
original metricg0.) The metric has the form

ds2 =
(
gij +

∑
r>0

t rGr,ij (x)
)

dxi ◦ dxj .

The first-order perturbation of the operator is given byF , and the second-order perturbation
is given by E . The scalar Laplacian1t defined by the metric ds2(t) can be put in
this form. The main result of this paper is contained in theorem 4 which expresses the
asymptotic coefficientsβn for n 6 4 in the heat content expansion in terms of geometric
quantities.

Previous results in this area dealt with time-independent (i.e. autonomous) processes;
we shall summarize the results of computations performed in [1, 3, 9] in theorem 3 as these
computations form the base for the extension to time-dependent processes described in
theorem 4. There are many other results in this area and many different techniques which
have been employed. For example, van den Berg and Le Gall [6] use probablistic methods
to study these coefficients. van den Berg and Srisatkunarajah [7] study polygonal regions in
the plane; we shall restrict ourselves to the smooth setting. McAvity [12, 13] uses a modified
de Witt ansatz to study these coefficients. Savo [14, 15] uses techniques from functional
analysis to derive a recursive formula for all the coefficients if the operator in question is the
time-independent Laplacian and ifρ = φ = 1. See also [8] for related work.

We introduce the following notational conventions. Denote the Riemannian measures on
M and on∂M by dx and dy. LetD0 be an operator of Laplace type on the space of smooth
sectionsC∞(V ) to a vector bundle overM. Recall that there exists a unique connection∇ on
V and a unique endomorphismE of V so that

D0 = −{Trace∇2 +E}.
If D0 = 10 is the scalar Laplacian, then the connection∇ is flat andE = 0. More generally, if
D = −(gµν∂µ∂ν +Aµ∂µ +B) is an operator of Laplace type, then (see [2, 10]) the connection
one-formω of ∇ and the endomorphismE are given by

ωδ = 1
2gνδ(A

ν + gµσ0µσ
ν) and E = b − gνµ(∂νωµ + ωνωµ − ωσ0νµσ ). (2)

We assume a decomposition of the boundary∂M as the disjoint union of two closed sets
CD andCN . We consider the boundary operator

Bu := u|CD ⊕ (u;m + Su)|CN .
Hereu;m is the inward unit normal covariant derivative ofuandS is an auxiliary endomorphism
of V . This formalism permits us to treat both the Robin and Dirichlet boundary conditions.
Let φ give the initial temperature distribution of the manifold and letu(x; t) = uφ,D0(x; t) be
the temperature distribution fort > 0;

(∂t +D0)u = 0 Bu = 0 and u|t=0 = φ.
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Letρ be a smooth section to the dual bundleV ∗ giving the specific heat of the manifold. Then
the total energy content of the manifold is given by:

β(φ,D0, ρ)(t) :=
∫
M

〈u(x; t), ρ(x)〉 dx.

In this expression,〈·, ·〉 denotes the natural pairing betweenV andV ∗. As t ↓ 0 there is an
asymptotic series of the form

β(φ,D0, ρ)(t) ∼
∑
n>0

tn/2βn(φ,D0, ρ).

There exist invariants which are locally computable so that

βn(φ,D0, ρ) =
∫
M

βMn (φ,D0, ρ)dx +
∫
∂M

β∂Mn (φ,D0, ρ)dy.

These are the heat content asymptotics which describe the short-time heat flow defined by the
problem. These results follow easily using methods developed in [11].

Let D̃0, ∇̃, andB̃ be the adjoint operators on the dual bundleV ∗. Let indicesi andj range
from 1 tom and index a local orthonormal frame field{ei} for the tangent bundle ofM; on the
boundary, we normalize the frame so thatem is the inward unit normal and let indicesa, b, and
c range from 1 tom − 1 and index the induced orthonormal frame for the tangent bundle of
the boundary. We adopt the Einstein convention and sum over repeated indices. Let ‘;’ and ‘:’
denote multiple covariant differentiation with respect to the Levi-Civita connections ofM and
of ∂M. LetR be the Riemann curvature tensor, letR be the scalar curvature, and letL be the
second fundamental form defined by the metricg0. Let� be the curvature of the connection
∇. The following result follows from computations performed in [1, 3, 9].

Theorem 3. With the notation established above, we have:

(1) β0(φ,D0, ρ) =
∫
M
〈φ, ρ〉 dx.

(2) β1(φ,D0, ρ) = −2π−1/2
∫
CD
〈φ, ρ〉 dy.

(3) β2(φ,D0, ρ) = −
∫
M
〈D0φ, ρ〉 dx +

∫
CD
{〈 12Laaφ, ρ〉 − 〈φ, ρ;m〉} dy +

∫
CN
〈Bφ, ρ〉 dy.

(4) β3(φ,D0, ρ) = −2π−1/2
∫
CD
{ 23〈φ;mm, ρ〉 + 2

3〈φ, ρ;mm〉 − 〈φ:a, ρ:a〉 + 〈Eφ, ρ〉 −
2
3Laa〈φ;m, ρ〉 − 2

3Laa〈φ, ρ;m〉 + 〈( 1
12LaaLbb − 1

6LabLab + 1
6Ramam)φ, ρ〉} dy + 2

3 ·
2π−1/2

∫
CN
〈Bφ, B̃ρ〉 dy,

(5) β4(φ,D0, ρ) = 1
2

∫
M
〈D0φ, D̃0ρ〉+

∫
CD
{ 12〈(D0φ);m, ρ〉+1

2〈φ, (D̃0ρ);m〉− 1
4〈LaaD0φ, ρ〉−

1
4〈Laaφ, D̃0ρ〉 + 〈( 1

8E;m − 1
16LabLabLcc + 1

8LabLacLbc − 1
16RambmLab + 1

16RabcbLac +
1
32R;m + 1

16Lab:ab)φ, ρ〉 − 1
4Lab〈φ:a, ρ:b〉 − 1

8〈�amφ:a, ρ〉 + 1
8〈�amφ, ρ:a〉} dy +∫

CN
{− 1

2〈Bφ, D̃0ρ〉 − 1
2〈D0φ, B̃f2〉 + 〈( 1

2S + 1
4Laa)Bφ, B̃ρ〉 dy.

Although the assumption that the underlying geometry is autonomous is natural in many
situations, there are some physical situations in which the geometry is time dependent; the
Universe evolves with time for example.

LetDt be the time-dependent family of operators of Laplace type given in equation (1).
Let u = uφ,D be the temperature distribution defined by the equations:

(∂t +Dt)u = 0 Bu = 0 and u|t=0 = φ.
Let β andβn be the associated heat content function and heat content asymptotics:

β(φ,D, ρ)(t) :=
∫
M

u(x; t)ρ(x; t) dx ∼
∑
n>0

βn(φ,D, ρ)t
n/2.
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If the specific heatρ is time dependent, expandρ(x; t) =∑06k<k0
ρk(x)t

k +O(tk0) in a Taylor
series. Then it is immediate that

βn(φ,D, ρ) =
∑

2k+`=n
βl(φ,D, ρk).

Consequently, we assume thatρ = ρ(x) henceforth is autonomous. The following is the main
theorem of this paper. It gives the new terms which appear in the asymptotic expansion when
Laplacian is time dependent.

Theorem 4. (1) β0(φ,D, ρ) = β0(φ,D0, ρ).
(2) β1(φ,D, ρ) = β1(φ,D0, ρ).
(3) β2(φ,D, ρ) = β2(φ,D0, ρ).
(4) β3(φ,D, ρ) = β3(φ,D0, ρ) + 1

2
√
π

∫
CD
G1,mmφρ dy.

(5) β4(φ,D, ρ) = β4(φ,D0, ρ) − 1
2

∫
M
{G1,ij φ;ij + F1,iφ;i + E1φ}ρ dx +

∫
CD
{( 7

16G1,mm;m −
1
4G1,mmLaa − 5

16F1,m)φρ
5
16G1,amφ:aρ + 1

2G1,mmρ;mφ} dy − 1
2

∫
CN
G1,mmρBφ dy.

Remark. We now return to the original problem. LetGij (t) := gij + thij + · · · be a time
dependent metric; we use theorem 4 to see that the terms which areO(t2) do not play a role
in βn for n 6 4. LetG := det(Gij ). We then have

1t = −G−1∂iG
ijG∂j .

We choose local coordinates sogij (x0) = δij and so∂kgij (x0) = 0. We may then expand the
Laplacian at the pointx0 in the form:

1t = −(1− thkk)∂i(δij − thij )(1 + th``)∂j
= 10 + thij ∂i∂j + t (hij ;i − h``;j )∂j + O(t2).

Consequently, to apply theorem 4 to the scalar Laplacian for a time-dependent metric, we must
set

G1,ij = hij ,F1,i = hij ;j − hjj ;i and E1 = 0.

Remark. In this paper, we deal with homogeneous boundary conditions and a zero heat
source. However, the methods developed in [4, 5] can easily be adapted to study variable
geometry with inhomogeneous boundary conditions and a non-trivial heat source.

We devote the remainder of this paper to the proof of theorem 4. We begin with a
technical lemma involving products. We say that the structures split ifM = M1 ×M2 where
M1 is closed, ifφ = φ1φ2, if ρ = ρ1ρ2, and ifDt = D1,t + D2,t . Thenu = u1u2 so
β(φ,D, ρ)(t) = β(φ1,D1, ρ1)(t) · β(φ2,D2, ρ2)(t). This shows the following lemma.

Lemma 5. If the structures split, then

βn(φ,D, ρ) =
∑
k+`=n

βk(φ1,D1, ρ1)β`(φ2,D2, ρ2).

There exist local invariantsβMn andβ∂Mn which are bilinear in the covariant derivatives
of the functionsφ andρ with coefficients which are invariant expressions in the covariant
derivatives of the tensorsL, S, R,�, E, E , F , andG so that:

βn(φ,D, ρ) =
∫
M

βMn (φ,D, ρ)dx +
∫
∂M

β∂Mn (φ,D, ρ)dy.

We assign weight zero toφ andρ; we assign weight one toL andS; we assign weight two to
R,�, andE; we assign weight 2k toGk; we assign weight 2k+1 toFk; we assign weight 2k+2
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to Ek. We increase the weight by one for every explicit covariant derivative. We established
the following result in the autonomous case using dimensional analysis in [2] (see lemmas 2.2
and 2.3); the same argument extends immediately to the time-dependent case so we omit
details.

Lemma 6. The local invariantsβMn are homogeneous of weightn and the local invariants
β∂Mn are homogeneous of weightn− 1.

We use lemma 6 to determine the general form of the invariantsβn for n 6 4.

Lemma 7. Letρ = ρ(x). Then there exist universal constants so that

(1) β0(φ,D, ρ) = β0(φ,D0, ρ).
(2) β1(φ,D, ρ) = β1(φ,D0, ρ).
(3) β2(φ,D, ρ) = β2(φ,D0, ρ) +

∫
M
{a1G1,iiφρ}.

(4) β3(φ,D, ρ) = β3(φ,D0, ρ) +
∫
CN
{(aN2 G1,aa + cN1 G1,mm)φρ} dy +

∫
CD
{(aD2 G1,aa +

cD1 G1,mm)φρ} dy.
(5) β4(φ,D, ρ) = β4(φ,D0, ρ) +

∫
M
{(a3G1,ii;jj + a4G1,ij ;ij + a5G1,iiG1,jj + a6G1,ijG1,ij +

a7G2,ii )φ + a8G1,iiφ;jj + a9F1,i;iφ + a13G1,iiEφ + (b1G1,jj ;i + b2G1,ij ;j )φ;i + c2G1,ij φ;ij +
c6E1φ +d2F1,iφ;i}ρ dx +

∫
CN
{aN10G1,aaφ;mρ +aN11G1,aaφρ;m +aN12G1,aaLbbφρ + (aN14G1,aaS +

cN7 G1,mmS)φρ +(bN3 G1,aa;m +bN4 G1,am:a +bN5 G1,abLab)φρ +cN3 G1,mmφ;mρ +cN4 G1,mmφρ;m +
cN5 G1,mmLaaφρ + dN3 G1,mm;mρφ + dN4 G1,amφ:aρ + dN5 F1,mφρ} dy +

∫
CD
{aD10G1,aaφ;mρ +

aD11G1,aaφρ;m+aD12G1,aaLbbφρ+(bD3 G1,aa;m+bD4 G1,am;a +bD5 G1,abLab)φρ+cD3 G1,mmφ;mρ+
cD4 G1,mmφρ;m + cD5 G1,mmLaaφρ + dD3 G1,mm;mφρ + dD4 G1,amφ:aρ + dD5 F1,mφρ} dy.

Proof. We use Weyl’s theorem [16] on the invariants of the orthogonal group to express these
invariants in terms of contractions of indices. We integrate by parts to exchange derivatives
at the cost of introducing additional boundary terms to normalize the interior integrands so
no covariant derivatives ofρ are present. Similarly, we integrate by parts on the boundary
to normalize the boundary integrands so no tangential covariant derivatives ofρ are present.
We write down a suitable spanning set and apply lemma 6 to see that theβn for n 6 4
have the form given in lemma 7 where the constantsa priori depend on the dimension of the
manifold.

Let (M2,D2, φ2, ρ2) be given. LetM1 be the circleS1 with the usual periodic parameter
y. LetD1 = −∂2

y andφ1 = 1. Thenu1 = 1 and thus we have thatβ(φ1,D1, ρ1) =
∫
M1
ρ1 dy1.

We use lemma 5 to see

βn(φ,D, ρ) =
∫
M1

ρ1 dx1 · βn(φ2,D2, ρ2).

It now follows that the coefficients which appear in lemma 7 are independent of the dimension
and are universal constants. �

The lack of commutativity in the vector valued case does not play a role in these
expressions; we therefore restrict ourselves henceforth to the scalar setting. To simplify the
notation, letβ̃n(φ,D, ρ) := βn(φ,D, ρ)−βn(φ,D0, ρ). We begin the proof of theorem 4 by
determining the constantsai , bj , andck which appear in lemma 7.

Lemma 8.

(1) β̃3(φ,D, ρ) = 1
2
√
π

∫
CD
G1,mmφρ dy.

(2) β̃4(φ,D, ρ) = − 1
2

∫
M
{G1,ij φ;ij + E1φ}ρ dx +

∫
CD
{− 1

4G1,mmLaaφρ + 1
2G1,mmρ;mφ} dy

− 1
2

∫
CN
G1,mmρBφ dy +

∫
M
d2F1,iφ;iρ dx +

∫
CD
{dD3 G1,mm;mφρ + dD4 G1,amφ:aρ +

dD5 F1,mφρ} dy +
∫
CN
{dN3 G1,mm;mρφ + dN4 G1,amφ:aρ + dN5 F1,mφρ} dy.
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Proof.

Step 1. We apply lemma 5. Let(M2, φ2,D2, ρ2) be arbitrary. Let

M1 = Tk := S1× · · · × S1 let φ1 = 1

and let

D1,t = 1M1 +
∑
r>0

t r
( ∑
i,j6k

Gr,ij∇i∇j +
∑
i6k
Fr,i∇i

)
.

SinceD1,tφ1 = 0, u1 = 1 andβn(1,D1, ρ1) = 0 for n > 0. Thus

βn(φ2,D1 +D2, ρ1ρ2) = β0(1,D1, ρ1)βn(φ2,D2, ρ2).

In particularβn is independent of the tensorsF1,i andG1,ij for i, j 6 k. This shows that the
following relations hold:

0= a1 = aN2 = aD2 = a3 = a4 = a5 = a6 = a7 = a8

= a9 = aN10 = aD10 = aN11 = aD11 = aN12 = aD12 = a13 = aN14.

Consequently the higher-order Taylor coefficientsEr , Fr,i , andGr,ij do not play a role in the
computation ofβn if n 6 4 and if r > 2. We may therefore restrict ourselves to first-order
deformations of the Laplacian1 henceforth and set

E = E1 Fi = F1,i Gij = G1,ij .

Step 2. LetM := Tk × [0, 1], let ya be the periodic parameters on the torus for 16 a 6 k,
and letz ∈ [0, 1] be the normal parameter. Letfab(z) be functions which are close in theC∞

topology to the Kronecker symbolδab and let

ds2 := fab(z) dya ◦ dyb + dz2

define the Laplacian10. Letφ = φ(z) and letu0 = uφ,10 be defined by the trivial variation;
u0 only depends on the normal parameterz. We take a variation whereE = 0,Fm = 0, and
Gmm = 0. Therefore:

(Gij∇i∇j +Fi∇i + E)u0 = 0

souφ,D = u0. Thusβ is independent of the remainingF andG variables and

0= b1 = b2 = bN3 = bD3 = bN4 = bD4 = bN5 = bD5 .

Step 3. Lets = s(t) := et−1; ∂s = e−t ∂t ands(0) = 0. Consider the conformal deformation
Dt = etD0. Letu0 := uφ,D0 and letu(x; t) = u0(x; s(t)). Then:

(∂t +Dt)u = et (∂s +D0)u0 = 0 Bu = 0 and u|t=0 = u0|s=0 = φ.
Consequently,uφ,D(x; t) = uφ,D0(x; s(t)) andβ(φ,D, ρ)(t) = β(φ,D0, ρ)(s(t)). We have

s
1
2 = t 1

2 + 1
4t

3
2 + O(t

5
2 ) s = t + 1

2 t
2 + O(t3)

s
3
2 = t 3

2 + O(t
5
2 ) s2 = t2 + O(t3).

We equate coefficients oft in the asymptotic expansions∑
n

tnβn(φ,D, ρ) ∼ β(φ,D, ρ)(t) = β(φ,D0, ρ)(s(t)) ∼
∑
n

βn(φ,D0, ρ)s(t)
n
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and use theorem 3 to derive the relationships:

β̃3(φ,D, ρ) = 1
4β1(φ,D0, ρ) = − 1

2
√
π

∫
CD

φρ dy

β̃4(φ,D, ρ) = 1
2β2(φ,D0, ρ) = 1

2

∫
M

(φ;ii +Eφ)ρ dx + 1
2

∫
CN

ρ(φ;m + Sφ) dy

+1
2

∫
CD

{ 12Laaφρ − ρ;mφ} dy.

In this setting, we haveE = −E,F = 0, andG = −g0. We may therefore complete the proof
of the lemma by deriving the relationships:

cN1 = 0 cD1 =
1

2
√
π

c2 = − 1
2 cN3 = − 1

2 cD3 = 0

cN4 = 0 cD4 = 1
2 cN5 = 0 cD5 = − 1

4 c6 = − 1
2 cN7 = − 1

2 .

�
We continue the proof of theorem 4 by determining all the remaining coefficients except

dD3 .

Lemma 9. We havẽβ4(φ,D, ρ) = − 1
2

∫
M
{G1,ij φ;ij+E1φ+F1,iφ;i}ρ dx− 1

2

∫
CN
G1,mm(Bφ)ρdy

+
∫
CD
{ 12G1,mmφρ;m − 1

4G1,mmLaaφρ + dD3 G1,mm;mφρ − 5
16G1,amφ:aρ − 5

16F1,mφρ} dy.

Proof. Throughout the proof of this lemma, we shall letM := S1× [0, 1] with the flat metric
and usual parameters(y, z). Let10 := −∂2

y − ∂2
z be the associated Laplacian.

Step 1. We use gauge invariance to determine the coefficientsd2, anddD5 which appear in
lemma 8. Forf ∈ C∞(M), letD0 := 10 + f and let

Dt := etf (∂t +D0)e
−tf − ∂t = 10 + 2tf;i∇i + tf;ii − t2f 2

;i .

Here∇i = ∂i . We take pure Dirichlet boundary conditions soCN = ∅. Let u0 := uφ,D and
let u := etf u0. We compute:

(∂t +Dt)u = etf (∂t +D0)u0 = 0 Bu = 0 and u|t=0 = u0|t=0 = φ.
Consequentlyu = uφ,D soβ(φ,D, ρ) = ∫

M
etf u0ρ. Therefore,

β4(φ,D, ρ) = β4(φ,D0, ρ) + β2(φ,D0, fρ) + 1
2β0(φ,D0, f

2ρ).

We have� = 0 andE = −f for D0. We use theorem 3 to see that

β0(φ,D0, f
2ρ) =

∫
M

f 2φρ dx

β2(φ,D0, fρ) = −
∫
M

fρ(10 + f )φ −
∫
CD

φ(fρ);m dy

β4(φ,D0, ρ) = 1
2

∫
M

{(10 + f )φ · (10 + f )ρ} dx

+
∫
CD

{ 12((10 + f )φ);mρ + 1
2φ((10 + f )ρ);m − 1

8f;mφρ} dy.

We haveD0 = 10. We use theorem 3 to computeβ4(φ,10, ρ) and to see that:

β̃4(φ,D, ρ) = 1
2

∫
M

f (φ10ρ − ρ10φ) dx +
∫
CD

{ 12f φ;mρ − 1
2f φρ;m − 1

8f;mρφ} dy.
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We use Green’s formula
∫
M
(α10β − β10α) dx = ∫

CD
(αβ;m − βα;m) to see that∫

M

f (φ10ρ − ρ10φ) dx =
∫
M

{ρ(10(f φ)− f10φ)} dx +
∫
CD

{f φρ;m − ρ(f φ);m} dy.

Consequently,

β̃4(φ,D, ρ) = 1
2

∫
M

{(−2f;iφ;i − f;iiφ)ρ} dx − 5
8

∫
CD

f;mρφ dy.

SinceF1,i = 2f;i andE1 = f;ii , we have

c6 = − 1
2 d2 = − 1

2 and dD5 = − 5
16.

Step 2. We take pure Neumann boundary conditions. Let

D := 10 + t (a∂z∂y + bz∂2
z + c∂z).

Let φ = φ(y) depend only on the tangential variable and letu0 = uφ,10. Because we are
taking Neumann boundary conditions,u0 only depends on the tangential variable so

(∂t +D)u0 = 0 Bu0 = 0 and u0|t=0 = φ.
Consequently,uφ,D = u0. This implies thatβ̃4(φ,D, ρ) = 0 so:

0= dN3 = dN4 = dN5 .

Step 3. We take pure Dirichlet boundary conditions. Let

D := e−
√−1y10e

√−1y = 10 − 2
√−1∂y + 1.

Let u0 = u1,D; this function is independent of the angular parametery and only depends on
the normal parameterz. We use equation (2) to computeωy =

√−1, ωz = 0,� = 0, and
E = 0. (It is at this stage that we are forced to consider more general operators despite the fact
that the primary interest is in the scalar Laplacian.) Letρ = ρ(y). We use theorem 3 to see

β4(1,D, e
√−1yρ) = 1

2

∫
M

(10 − 2
√−1∂y + 1)(e

√−1yρ)

= 1
2

∫
M

e
√−1yρ = β4(e

√−1y,10, ρ).

Let u := e
√−1yu0 and letDt := 10 + t∂y∂z −

√−1t∂z. Then

(∂t +Dt)u = (∂t +10)e
√−1yu0 + t∂z(u0)(∂y −

√−1)e
√−1y = 0.

Let φ := e
√−1y . Thenuφ,D = u = e

√−1yu0 so

β4(e
√−1y,D, ρ) = β4(1,D, e

√−1yρ).

We show thatdD4 = dD5 and complete the proof by computing:

0= β4(e
√−1y,D, ρ)− β4(1,D, e

√−1yρ)

= β4(e
√−1y,D, ρ)− β4(e

√−1y,10, ρ)

= √−1
∫
CD

e
√−1y(dD4 − dD5 )ρ(y) dy.

�
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To complete the proof of theorem 4, it only remains to evaluate the coefficientdD3 . This is
a one-dimensional problem. LetM := [0, 1]. We make a change of variables on the manifold
M × [0,∞) to evaluate the coefficient ofdD3 that mixes up the space and time variables. Let

z̃ := z + tz2 t̃ := t
dz̃ = (1 + 2tz) dz + z2 dt dt̃ = dt

∂z̃ = (1 + 2tz)−1∂z ∂t̃ = ∂t − z2(1 + 2tz)−1∂z.

Let D̃ := −∂2
z̃

+ z̃2∂z̃. Let

D := ∂t̃ + D̃ − ∂t = −z2(1 + 2tz)−1∂z − (1 + 2tz)−2∂2
z + 2t (1 + 2tz)−3∂z

+(z + tz2)2(1 + 2tz)−1∂z = 10 + t{4z∂2
z + (2z3 + 2)∂z} + O(t2).

Let φ = 1, let ρ̃ be identically one near̃z = 0, let ρ̃ be identically zero near̃z = 1, and
letρ(z; t) := ρ̃(z+ tz2). We impose Dirichlet boundary conditions; they are preserved by this
coordinate transformation. Sinceρ is zero away from the left-hand edge of the interval, the
principal of not feeling the boundary shows we can neglect the right-hand edge. Thus

ρ̃(z̃)uφ,D̃(z̃; t̃ ) = ρ(z; t)uφ,D(z; t) + E(z, t)

where the errorE vanishes to infinite order int ast ↓ 0. Consequently, we have:

β(φ, D̃, ρ̃)(t) =
∫ ∞

0
uφ,D̃(z̃; t̃ )ρ̃(z̃) dz̃

=
∫ ∞

0
uφ,D(z; t)ρ̃(z + tz2)(1 + 2tz) dz + O(t3)

=
∫ ∞

0
uφ,D(z; t){ρ̃(z) + ρ̃ ′(z)tz2 + 1

2 ρ̃
′′(z)t2z4)} · (1 + 2tz) dz + O(t3)

= β(φ,D, ρ̃)(t) + tβ(φ,D, ρ̃ ′z2 + 2zρ̃)(t)

+t2β(φ,D, 1
2 ρ̃
′′z4 + 2ρ̃ ′z3)(t) + O(t3).

We expand both sides and compare the powers oft2 to see that:

β4(1, D̃, ρ̃) = β4(1,D, ρ̃) + β2(1,D, ρ̃
′z2 + 2zρ̃) + β0(1,D, 1

2 ρ̃
′′z4 + 2ρ̃ ′z3).

We haveD0 = 10, Gmm = 4z, andFm = 2z3 + 2. Recall thatρ̃ is identically one near zero.
We use lemma 9 to computeβn(1,D, ·):

β4(1,D, ρ̃) =
∫
CD

(4dD3 − 5
8)φρ̃

β2(1,D, ρ̃
′z2 + 2zρ̃) =

∫
CD

(−2)φρ̃

β0(1,D, 1
2 ρ̃
′′z4 + 2ρ̃ ′z3) = 0

β4(1, D̃, ρ̃) =
∫
CD

(4dD3 − 5
8 − 2)φρ̃.

The operatorD̃ is autonomous. It is not self-adjoint so we must use some care in applying
theorem 3. We use equation (2) to compute:

D̃ = −∂2
z̃ + z̃2∂z̃ D̃∗ = −∂2

z̃ − z̃2∂z̃ − 2z̃

ωm(D̃) = − 1
2 z̃

2 ωm(D̃
∗) = 1

2 z̃
2

E(D̃) = z̃− 1
4 z̃

4 E(D̃∗) = 2z̃− z̃− 1
4 z̃

4.
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Consequently, we compute that

β4(φ, D̃, ρ̃) =
∫
CD

{ 12(−2z̃ρ);mφ + 1
8(z̃);mρ̃φ}.

This yields the relation

−1 + 1
8 = 4dD3 − 5

8 − 2 so dD3 = 7
16.
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